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Abstract. We prove the existence of a Galois closure for towers of torsors under finite
group schemes over a proper, geometrically connected and geometrically reduced algebraic
stack X over a field k. This is done by describing the Nori fundamental gerbe of an
essentially finite cover of X. A similar result is also obtained for the S-fundamental gerbe.

Introduction

Let K Ď L be a finite separable field extension. The extension is called Galois if all
automorphisms of the algebraic closure L̄ fixing K send L to L. In a more geometric
language this means that K Ď L is Galois if and only if SpecL ÝÑ SpecK is a torsor
under the automorphism group AutKpLq. It is not true that all finite separable extensions
are Galois. Even worse, it could happen that even for two successive Galois extensions
K Ď E and E Ď L the tower K Ď L is, although still finite separable, not Galois anymore.
For example, Q Ď Qr

?
2s Ď Qr 4

?
2s is a tower of Galois extensions, but itself is not Galois.

Since L “ Krβs for some β P L, there is a field L1 inside a chosen algebraic closure L̄ of
L, obtained from L by adjoining all the roots of the minimal polynomial of β to L. The
extension K Ď L1 enjoys the following properties:

‚ The extension K Ď L1 is Galois.
‚ For any Galois extension K ĎM inside L̄ with M containing L, we have L1 ĎM .

The field L1, or more precisely the extension K Ď L1, is called the Galois closure of K Ď L.
When K Ď L is a tower of two successive Galois extensions K Ď E and E Ď L, then
L Ď L1, E Ď L1 are also Galois extensions. If we denote G :“ AutKpEq, H :“ AutEpLq,
then the Galois closure L1 provides the following data (3):

‚ The automorphism group G :“ AutKpL
1q and group homomorphisms α : G � G

and Kerpαq “ AutEpL
1q� H.

‚ A G-torsor, namely SpecL1 Ñ SpecK, together with a factorization SpecL1 ÝÑ
SpecL such that SpecL1 Ñ SpecE is G-equivariant and SpecL1 ÝÑ SpecL is
Kerpαq-equivariant.
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In the construction of the étale fundamental group, Grothendieck completely generalized
the Galois theory of fields to that of schemes. In the world of schemes a "finite separable
field extension" becomes a finite étale morphism, and a "Galois extension" becomes a
connected finite étale cover which is a torsor under its automorphism group, namely aGalois
cover. Let X be a connected scheme equipped with a geometric point x : Spec k̄ ÝÑ X,
and let f : Z ÝÑ X be a connected surjective finite étale cover. Using Grothendieck’s
equivalence between the category of finite étale covers of X and the category of finite sets
with a continuous πét

1 pX, xq-action, one can identify f with a finite set with a transitive
πét

1 pX, xq-action or, after a choice of a geometric point z in Z, an open subgroup π of
πét

1 pX, xq. Thus there is a pointed finite étale cover f 1 : Z 1 ÝÑ X mapping to Z ÝÑ X
given by the maximal normal subgroup of πét

1 pX, xq contained in π, and this pointed cover
enjoys the following properties (I):

‚ The cover f 1 : Z 1 ÝÑ X is Galois.
‚ The pointed cover pZ 1, z1q with the map pZ 1, z1q ÝÑ pZ, zq has the following univer-
sal property: if pT, tq ÝÑ pX, xq is another pointed Galois cover mapping to pZ, zq,
then there exists a unique map pT, tq ÝÑ pZ 1, z1q factorising pZ 1, z1q ÝÑ pZ, zq.

Note that since f 1 corresponds to a normal subgroup of πét
1 pX, xq it is independent of

the choice of the base points z, x. The map f 1 is the Galois closure of f (see also [Sz,
Proposition 5.3.9, pp. 169] for a different approach). If f is moreover a tower of Galois
covers Z ÝÑ Y and Y ÝÑ X, then replacing the automorphisms of field extensions by the
automorphisms of covers the Galois closure Z 1 ÝÑ X enjoys exactly the same properties
(3) listed in the field case.

Now a natural question is: what about covers which may not be étale such as the
Kummer covers in characteristic p ą 0? What would be a "Galois closure" in that case?
The present paper is set out to address these issues. As in the étale case we resort to the
machinery of fundamental groups. Here the fundamental group is the Nori fundamental
group πNp´, ˚q which was introduced in [No1] or its generalization - the Nori fundamental
gerbe ΠN

´ introduced in [BV]. In Definition 1.1 we define the notion of the Nori fundamental
gerbe. Its existence is characterized in 1.2, and its Tannakian property is in Theorem 1.10.
We assume the base X to be inflexible to guarantee the existence of the fundamental gerbe,
and this "inflexible" property plays the same role as the "connected" property in the étale
case. We assume X to be pseudo-proper (Definition 1.6) in order to use the Tannakian
property. The next step is to understand what are the "finite separable extensions" or the
"finite étale morphisms" in this context. For this, we introduce the notion of "essentially
finite covers" in Definition 1.11. The "Galois extensions" or the "Galois covers" are replaced
by "Nori-reduced torsors" (Definition 1.13). Under this setting we obtain a very pretty
Galois theory:

Theorem I. Let X be a pseudo-proper and inflexible algebraic stack of finite type over k
and let f : Y ÝÑ X be an essentially finite cover. If char k ą 0 assume that either f is
étale or dimk H1

pX , Eq ă 8 for all vector bundles E on X . Then



ESSENTIALLY FINITE COVERS AND TOWERS OF TORSORS 3

(1) There exists a finite map Π ÝÑ ΠN
X {k, which is unique up to equivalence, whose

base change along X ÝÑ ΠN
X {k is Y f

ÝÝÑ X . Moreover, Y is inflexible over k if and
only if Π is a gerbe over k. In this case Y ÝÑ Π is the Nori fundamental gerbe of
Y, and there is a 2-Cartesian diagram,

Y ΠN
Y{k

X ΠN
X {k

f

and we have EFinpVectpYqq “ tV P VectpYq | f˚V P EFinpVectpX qqu, where
EFinpVectpX qq denotes the category of essentially finite vector bundles on X (see
Definition 1.5).

(2) The étale case. If f is étale then Y is inflexible over k if and only if H0
pY ,OYq “ k

and in this case there are 2-Cartesian diagrams

Y ΠN
Y{k ΠN,ét

Y{k

X ΠN
X {k ΠN,ét

X {k

f

(3) The torsor case. If f is a torsor under a finite group scheme G over k the following
are equivalent:
‚ Y is inflexible over k;
‚ H0

pY ,OYq “ k;
‚ f is Nori-reduced over k.
Under these conditions there are 2-Cartesian diagrams:

Y ΠN
Y{k Spec k

X ΠN
X {k BG

β

π

α

f

For pointed covers Theorem I yields the following Galois correspondence.

Corollary I. Let X be a pseudo-proper and inflexible algebraic stack of finite type over
k with a rational point x P X pkq. If char k ą 0 assume that dimk H1

pX , Eq ă 8 for all
vector bundles E on X . Then there is an equivalence of categories

"

Pointed essentially finite covers
pY , yq ÝÑ pX , xq with Y inflexible

* "

Subgroups H ă πNpX , xq
of finite index

*

pY , yq ÝÑ pX , xq πNpY , yq

where in the right-hand side we consider inclusions as arrows. Moreover
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‚ an essentially finite cover pY , yq ÝÑ pX , xq with Y inflexible is a torsor under a
finite group G if and only if πNpY , yq is a normal subgroup of πNpX , xq and in this
case there is an exact sequence

1 ÝÑ πN
pY , yq ÝÑ πN

pX , xq ÝÑ G ÝÑ 1

‚ an essentially finite cover pY , yq ÝÑ pX , xq with Y inflexible is étale if and only if
the finite scheme πNpX , xq{πNpY , yq is étale over k.

The above sequence was already proved to be exact in [EHS, Theorem 2.9] under the
assumption that G is étale. The main difficulty in the present work is to show that,
if f : Y ÝÑ X is an essentially finite cover, then f˚ preserves essentially finite vector
bundles. The statement would be false without assuming that X is pseudo-proper and
dimk H1

pX , Eq ă 8 (see Lemmas 2.11, 2.13 and, for a counter-example, Example 5.5). A
key tool in the proof is a characterization of essentially finite vector bundles given in [TZ2]
which generalizes previous results of [BdS] and [AM].

Here is our main result on finding Galois closures for covers which may not be étale:

Theorem II. Let X be a pseudo-proper and inflexible fibered category over k and f : Y ÝÑ
X an essentially finite cover with a rational point y P Ypkq. Denote by Γ the monodromy
gerbe of f˚OY in EFinpVectpX qq and by ∆ ÝÑ Γ the cover in (1) of Lemma 2.2 that
extends f . Then

(1) There is a diagram with Cartesian squares

Spec k Pf Spec k

Y ∆

X Γ

p

λ
u1

y

x

f

u

such that the map π : Pf ÝÑ X is a pointed Nori-reduced torsor under the finite
group scheme Gf “ AutΓpupxqq, and Γ is the monodromy gerbe of π˚OPf

.
(2) The map λ : Pf ÝÑ Y is faithfully flat if and only if ∆ is a gerbe (e.g. when Y is

inflexible) in which case it is a Nori-reduced torsor for a subgroup scheme of Gf .
(3) In the general case λ : Pf ÝÑ Y factors as η ˝ λ1, where λ1 : Pf ÝÑ Y 1 is faithfully

flat and a Nori-reduced torsor for a finite subgroup scheme of Gf , and η : Y 1 ÝÑ Y
is a closed immersion.

(4) Finally the torsor π : Pf ÝÑ X has the following universal property: for any pointed
Nori-reduced torsor g : pT , tq ÝÑ pX , xq for a finite group scheme G, and any
pointed faithfully flat X -morphism h : pT , tq Ñ pY , yq, there is a unique factoriza-
tion h “ λ ˝ j, where j : pT , tq ÝÑ pPf , pq is equivariant with respect to a surjective
homomorphism G ÝÑ Gf .
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We then define the Galois closure of a pointed essentially finite cover f : Y ÝÑ X to be
the Nori-reduced torsor Pf ÝÑ X in Theorem II. In particular, if f : Y ÝÑ X is a pointed
inflexible essentially finite cover (see Definition 2.4), then it admits a Galois closure in the
sense of (I) (see Lemma 2.6).

Next we deal with the Galois closure problem for towers. Let G and H be finite group
schemes over a field k. A pG,Hq-tower of torsors over a k-algebraic stack X consists of
maps f : Z h

ÝÝÑ Y g
ÝÝÑ X where h and g are an H-torsor and a G-torsor respectively.

We first show that under some conditions f “ g ˝ h is an essentially finite cover (Lemma
3.4). Then we define the notion of a Galois envelope (see Definition 3.8) in the sense of
(3). We investigate when the torsor Pf obtained in Theorem II for Z ÝÑ X is a Galois
envelope, if Pf is really a Galois envelope then we call it the Galois closure for the tower
Z h
ÝÝÑ Y g

ÝÝÑ X . Here we do not insist that g, h are Nori-reduced torsors (which are
"Galois covers" in the étale case). In order to obtain the Galois envelope we study the
moduli BpG,Hq of all pG,Hq-towers (Definition 3.1) which is an algebraic stack locally of
finite type over k (Proposition 3.3). Our main result for pointed towers is the following:

Theorem III. Let X be a pseudo-proper (see Definition 1.6) and inflexible (see Definition
1.1) algebraic stack of finite type over k. If char k ą 0 assume that dimk H1

pX , Eq ă 8
for all vector bundles E on X . Then, if Z h

ÝÝÑ Y g
ÝÝÑ X is a pG,Hq-tower of torsors then

Z ÝÑ X is an essentially finite cover. Assume moreover that Z has a k-point z P Zpkq.
Then the tower admits a pointed Nori-reduced Galois closure pP , pq λ

ÝÝÑ pZ, zq such that:

(1) λ is faithfully flat if and only if the torsors in the tower are Nori-reduced, or equiv-
alently Z and Y are inflexible, and in this case it is a Nori-reduced torsor under a
finite group scheme.

(2) P ÝÑ X is a torsor under a finite subgroup of the affine and of finite type k-group
scheme AutBpG,Hqpξq, where ξ P BpG,Hqpkq is the tower fiber of the given tower
over x “ ghpzq : Spec k ÝÑ X .

Previous attempts to give an affirmative answer to this question failed: both [Ga] and
[ABE] (unpublished) contain mistakes in the proof of their main theorems. In [Ga], Garuti
claims a functorial construction of the "Galois closure" (which is the Galois envelope in
our paper) for all towers of torsors under finite locally free group schemes over any locally
Noetherian base B. He works basically without any assumption. But this is too good to
be true. Without rational points the claim is wrong, otherwise the map in [Zh, Corollary
5.14, pp. 41] would be an isomorphism. Example 5.4 shows that even for a smooth
connected affine scheme X over an algebraically closed field k there are pointed towers
without a Galois envelope (because X is not pseudo-proper). Example 5.3 shows that the
assumption dimk H1

pX , Eq ă 8 is also important. This condition is needed to ensure that
every Ga-torsor over a cover of X is induced by a torsor under a finite subgroup of Ga.
Notice that the cohomological assumption is met for proper algebraic stacks of finite type
over k ([Fal]). Moreover a geometrically connected and geometrically reduced algebraic
stack over k is inflexible (see Remark 1.2).
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Recently, in [Otabe] S. Otabe used our result to study the lifting problem for linearly
reductive torsors over curves. He also studied the Galois closure problem in the appendix
for non-proper base schemes.

We also study a similar problem for the S-fundamental gerbe (see [BPS], [BHD], [La1],
[La2]). Let NspX q be the category of semi-stable vector bundles on X (see Definition 4.1).
The following analog of Theorem I is proved for S-fundamental gerbes.

Theorem IV. Let X be a pseudo-proper algebraic stack of finite type over k and with an
S-fundamental gerbe. Then X is inflexible and the profinite quotient of the S-fundamental
gerbe of X over k is the Nori fundamental gerbe of X over k. Let also f : Y ÝÑ X be an
essentially finite cover with Y inflexible and, if char k ą 0, assume that dimk H1

pX , Eq ă 8
for all vector bundles E on X . Then

NspYq “ tV P VectpYq | f˚V P NspX qu

and Y has an S-fundamental gerbe fitting in a 2-Cartesian diagram

Y ΠS
Y ΠN

Y

X ΠS
X ΠN

X

In particular if y P Ypkq and x “ fpyq P X pkq then there is a Cartesian diagram of affine
group schemes

πSpY , yq πNpY , yq

πSpX , xq πNpX , xq

When f : Y ÝÑ X is a pointed torsor under a finite group scheme G, then the following
sequence is exact

1 ÝÑ πS
pY , yq ÝÑ πS

pX , xq ÝÑ G ÝÑ 1.

The paper is divided as follows. In the first section we recall part of the machinery
about Nori fundamental gerbes and prove some preliminary results. In the second section
we study essentially finite covers and their Nori fundamental gerbes, proving in particular
Theorem I, Theorem II and Corollary I. In the third section we study towers of torsors and
their Galois closures, proving Theorems 3.9 and III, while in the fourth section we study
the S-fundamental gerbe and prove Theorem IV. Finally in the last section we collect some
counter-examples.
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1. Notation and Preliminaries

1.1. Notation. By a fibered category over a scheme S we will always mean a category
fibered in groupoids over the category Aff{S of affine schemes over S.

Let X be a fibered category over Aff{S, where S is an affine scheme. An fpqc-altlas
from a scheme U is a map U ÝÑ X representable by fpqc-coverings of algebraic spaces,
i.e. for any algebraic space T mapping to X the fibered product U ˆX T is again an
algebraic space over S which is an fpqc covering of T . A fibered category X is said to be
quasi-compact if it has an fpqc-atlas from a quasi-compact scheme. If f : X ÝÑ Y is a
quasi-compact and quasi-separated map between fibered categories admitting fpqc-atlases
from schemes, then the pullback f˚ : QCohpYq ÝÑ QCohpX q admits a right adjoint
f˚ : QCohpX q ÝÑ QCohpYq which commutes with flat base change, where QCohp´q
denotes the category of quasi-coherent sheaves (see [Ton, Proposition 1.7]).

A cover of a fibered category X is a finite, flat and finitely presented morphism or,
equivalently, an affine map f : Y ÝÑ X with the property that f˚OY is locally free of finite
rank. If X is defined over a field k a pointed cover over k

pY , yq ÝÑ pX , xq

is a cover f : Y ÝÑ X with x P X pkq and y P Yxpkq, where Yx denotes the fiber of f over
x, which is a finite k-scheme; equivalently y P Ypkq with a given isomorphism fpyq » x.

Given a morphism of schemes U ÝÑ V and a functor F : Aff{U ÝÑ pSetsq, the Weil
restriction of F along U ÝÑ V is the functor

WU{V pF q : Aff{V ÝÑ pSetsq, Z ÞÝÑ HompZ ˆV U, F q .

Given any functor G : Aff{V ÝÑ pSetsq, we set WUpGq :“ WU{V pGˆV Uq.
Injectivity and surjectivity of morphisms of group schemes always mean the correspond-

ing properties for fpqc sheaves. For affine group schemes over a field an injective morphism
is a closed immersion and a surjective morphism is faithfully flat ([Wat, Theorem 15.5] for
surjectivity).

1.2. Preliminaries. We will now recall some results used in later sections.
Fix a base field k.
For properties of affine gerbes over a field (often improperly called just gerbes) and

Tannakian categories used here the reader is referred to [TZ1, Appendix B].

Definition 1.1 ([BV, Definition 5.1, Definition 5.3]). For a fibered category X over k, the
Nori fundamental gerbe (respectively, Nori étale fundamental gerbe) of X {k is a profinite
(respectively, proétale) gerbe Π over k together with a map X ÝÑ Π such that for all finite
(respectively, finite and étale) stacks Γ over k the pullback functor

HomkpΠ,Γq ÝÑ HomkpX ,Γq

is an equivalence of categories. Furthermore, if this gerbe exists, it is unique up to a unique
isomorphism and in that case it will be denoted by ΠN

X {k (respectively, ΠN,ét
X {kq; sometimes

{k will be dropped if it is clear from the context.
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We call X inflexible if it is non-empty and all maps from it to a finite stack over k factor
through a finite gerbe over k.

Remark 1.2. By [BV, p. 13, Theorem 5.7] X admits a Nori fundamental gerbe if and
only if it is inflexible; in this case, the Nori étale fundamental gerbe of X is the maximal
proétale quotient of the Nori fundamental gerbe of X . If X is reduced, quasi-compact and
quasi-separated, then X is inflexible if and only if k is algebraically closed in H0

pOX q [TZ1,
Theorem 4.4]. In particular if X is geometrically connected and geometrically reduced,
then it is inflexible.

Definition 1.3. If X is an inflexible fibered category over k with a rational point x P X pkq
and Nori gerbe ψ : X ÝÑ ΠN

X {k, the Nori fundamental group scheme πNpX {k, xq of pX , xq
over k is the sheaf of automorphisms of ψpxq P ΠN

X {kpkq. Again {k will often be dropped if
it is clear from the context.

Remark 1.4. The Nori fundamental group scheme πNpX , xq is a profinite group scheme
and its classifying stack BπNpX , xq is isomorphic to ΠN

X (the trivial torsor is sent to ψpxq).
The universal property of ΠN

X translates into the following: for all finite group schemes G
over k the map

Homk-groupspπ
NpX , xq, Gq tpointed G-torsors pP , pq ÝÑ pX , xqu{ »

pπNpX , xq ÝÑ Gq pX ÝÑ B πNpX , xq ÝÑ BGq

is bijective.

Definition 1.5 ([BV, p. 21, Definition 7.7]). Let C be an additive and monoidal cate-
gory. An object E P C is called finite if there exist polynomials f ‰ g P NrXs and an
isomorphism fpEq » gpEq; the object E is called essentially finite if it is a kernel of a ho-
momorphism of finite objects of C. Let EFinpCq denote the full subcategory of C consisting
of essentially finite objects.

Definition 1.6 ([BV, p. 20, Definition 7.1]). A category X fibered in groupoids over a
field k is pseudo-proper if it satisfies the following two conditions:

(1) there exists a quasi-compact scheme U together with a morphism U ÝÑ X which
is representable, faithfully flat, quasi-compact, and quasi-separated, and

(2) for all vector bundles E on X the k-vector space H0
pX , Eq is finite-dimensional.

Example 1.7 ([BV, p. 20, Example 7.2]). Examples of pseudo-proper fibered categories
are proper algebraic stacks and affine gerbes.

Remark 1.8. Let X be a pseudo-proper algebraic stack of finite type over k. If X is
inflexible then H0

pOX q “ k (see [BV, Lemma 7.4]), while the converse holds if X is reduced
(see Remark 1.2).

Definition 1.9. Let C be a Tannakian category, and let M P C be an object. The
monodromy gerbe of M is the gerbe corresponding to the Tannakian subcategory of C
generated by M . (See [TZ1, Definition B.8, pp. 42])
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Theorem 1.10 ([BV, p. 22, Theorem 7.9, Corollary 7.10]). Let X be an inflexible pseudo-
proper fibered category over a field k. Then the pullback along X ÝÑ ΠN

X {k induces an
equivalence of categories VectpΠN

X {kq ÝÑ EFinpVectpX qq.
Let C be a Tannakian category. Then EFinpCq is the Tannakian subcategory of C of

objects whose monodromy gerbe is finite.
Definition 1.11. A cover f : Y ÝÑ X is essentially finite if f˚OY is an essentially finite
vector bundle.
Definition 1.12. Let X be an inflexible and pseudo-proper fibered category over a field
k. Given an object V of EFinpVectpX qq, the gerbe corresponding to the full Tannakian
subcategory of EFinpVectpX qq generated by V will be called the monodromy gerbe of V .
When f : Y ÝÑ X is an essentially finite cover, the monodromy gerbe of the cover is by
definition the monodromy gerbe of f˚OY .
Definition 1.13 ([BV, Definition 5.10]). A map X ÝÑ Γ from a fibered category over k
to a finite gerbe over k is called Nori-reduced over k if any faithful morphism Γ1

α
ÝÝÑ Γ that

fits in a factorization X ÝÑ Γ1
α
ÝÝÑ Γ, where Γ1 is a gerbe, is an isomorphism.

A torsor P ÝÑ X under a finite group scheme G over k is called Nori-reduced over k if
the map X ÝÑ BG is Nori-reduced over k.
Remark 1.14. If X is inflexible, then any map from X to a finite gerbe factors uniquely
through a Nori-reduced map (see [BV, Lemma 5.12]). Moreover ΠN

X can be seen as the
projective limit of the Nori-reduced maps X ÝÑ Γ (see [BV, Theorem 5.7] and its proof).

If X is an inflexible and pseudo-proper fibered category, and φ : X ÝÑ Γ is a map to a
finite gerbe, then φ is Nori-reduced if and only if the induced map ΠN

X ÝÑ Γ is a quotient
([TZ1, Definition B.1, pp. 40]); in this case VectpΓq ÝÑ EFinpVectpX qq is a Tannakian
subcategory. This is a direct consequence of Theorem 1.10 and the universal property of
ΠN

X . Moreover φ˚OX » OΓ (see [BV, Lemma 7.11]).
One of the key ingredients in the paper is the following result.

Theorem 1.15 ([TZ2, Corollary I]). Let X be a pseudo-proper and inflexible algebraic stack
of finite type over a field k of positive characteristic, and let f : Y ÝÑ X be a surjective
cover. If V P VectpX q, and f˚V is free, then V is essentially finite in VectpX q.
Remark 1.16. If X is a pseudo-proper and inflexible algebraic stack of finite type over
a field k (the characteristic is allowed to be 0), f : Y ÝÑ X is a surjective étale cover
and V P VectpX q is trivialized by f , then it follows that V is essentially finite with étale
monodromy gerbe in EFinpVectpX qq. Indeed, replacing f by a Galois closure one can
assume that f is an étale Galois cover. This case is exactly [TZ3, Lemma 1.4].

Lemma 1.17. Let T 2 a
ÝÝÑ T and T 1 b

ÝÝÑ T be two maps of affine group schemes over k,
and let

R BT 1

BT 2 BT
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be the corresponding 2-Cartesian diagram. Then the following two hold.
(1) The functor Ψ: BpT 2 ˆT T 1q ÝÑ R mapping a T 2 ˆT T 1-torsor to the associated

T 2- and T 1- torsors is fully faithful and it is an equivalence if and only if the
map T 1 ˆ T 2 ÝÑ T , pt1, t2q ÞÑ bpt1qapt2q is an fpqc epimorphism (e.g. if a or b is
surjective). In this case a quasi-inverse is obtained by mapping an object of R given
by torsors P 2, P 1, P under T 2, T 1, T respectively and equivariant maps P 1 ÝÑ P and
P 2 ÝÑ P to the fiber product P 2 ˆP P 1.

(2) If T 2 “ Spec k, so that BT 2 “ Spec k, and T 1 ÝÑ T is injective, then R “ T {T 1,
where T {T 1 ÝÑ BT 1 is induced by the T 1-torsor T ÝÑ T {T 1. In particular, if T 1 is
a finite subgroup of T , then BT 1 ÝÑ BT is an affine map.

Proof. The functor Ψ maps the trivial torsor to pT 2, T 1, idq P Rpkq. A direct computation
shows that the sheaf of automorphisms of this object is exactly T 2 ˆT T 1 (via Ψ). This
means that Ψ is an equivalence onto the full-substack R1 of R of objects locally isomorphic
to pT 2, T 1, idq. Thus we have to understand when R1 “ R. All objects of R are locally
isomorphic to an object of the form pT 2, T 1, cq P RpUq where U is an affine scheme and c P
T pUq is thought of as multiplication on the left T ÝÑ T . An isomorphism pT 2, T 1, 1q ÝÑ
pT 2, T 1, cq is given by t2 P T 2pUq and t1 P T 1pUq such that capt2q “ bpt1q. Thus pT 2, T 1, cq
is locally isomorphic to pT 2, T 1, 1q if and only if c is in the (fpqc) image of T 1 ˆ T 2 ÝÑ T .
The last claim of p1q follows because if P is a T 2 ˆT T 1-torsor inducing torsors P 2, P 1, P
under T 2, T 1, T respectively then the commutative diagram

P P 1

P 2 P

is automatically Cartesian: locally, after choosing a section of P , the above diagram is the
one yielding T 2 ˆT T 1. Notice that the T 2 ˆT T 1-space given in the last part of p1q is not
a torsor in general because it may fail to have sections locally.

For p2q, R is the sheaf of T 1-torsors P together with an equivariant map P ÝÑ T , which
is represented by T {T 1. �

Remark 1.18. If f : Y ÝÑ X is a cover of algebraic stacks then f˚ preserves vector
bundles. Moreover since f˚ is exact we have

Hi
pY , Eq “ Hi

pX , f˚Eq for all i ě 0, E P QCohpYq .

In particular, if X is pseudo-proper over k, then Y is pseudo-proper over k. Moreover
we will often use also the following property: if for all vector bundles E on X one has
dimk H1

pEq ă 8 then the same holds for vector bundles on Y .

Lemma 1.19 ([TZ2, Lemma 2.5]). Let X be an algebraic stack over a field k, of positive
characteristic, such that dimk H1

pX,Eq ă 8 for all vector bundles E on X . Let

G0 ÝÑ G1 ÝÑ ¨ ¨ ¨ ÝÑ GN´1 ÝÑ GN “ 0
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be a sequence of surjective maps of quasi-coherent sheaves on X such that KerpGl´1 ÝÑ Glq
is free of finite rank for all 1 ď l ď N . Then there exists a surjective cover f : X 1 ÝÑ X
such that f˚Gl is free of finite rank for all l.

Remark 1.20 ([TZ1, Example 1.5, Corollary 1.7]). Let Γ be a finite stack or an affine
gerbe over k. For all fibered categories Z over k, the pullback of vector bundles establishes
an equivalence of categories between HomkpZ,Γq and the groupoid of functors VectpΓq ÝÑ
VectpZq which are k-linear, monoidal and preserves short exact sequences in the category
of quasi-coherent sheaves.

Remark 1.21. Let us comment on the relationship between the essentially finite vector
bundles on a fibered category X over k and the vector bundles which are pullbacks from
a finite stack. When X is inflexible and pseudo-proper, these two notions agree as a
consequence of [BV]. One of the key observations in [BV] is that if Γ is a finite stack over k
and V P VectpΓq, then V is essentially finite. More precisely, there is a finite vector bundle
E on Γ and an exact sequence in CohpΓq

0 ÝÑ V ÝÑ E‘a ÝÑ E‘b ÝÑ E 1 ÝÑ 0

for some a, b P N and E 1 P VectpΓq. In particular, if φ : X ÝÑ Γ is any map from a fibered
category, then φ˚V is an essentially finite vector bundle on X . The proof of this fact is the
same as that of [BV, Lemma 7.15] together with the following clarification. First we can
assume that Γ is connected. Let ρ : T ÝÑ Γ be a surjective cover from a finite connected
k-scheme T . The direct image E “ ρ˚OT is finite by [BV, Lemma 7.15]. Since the cokernel
of V ÝÑ ρ˚ρ

˚V » E‘ rkV is a vector bundle one can easily construct the above sequence.
Now let X be a fibered category and V P VectpX q. If V is essentially finite, one might

argue that there is a homomorphism between two finite vector bundles q : E1 ÝÑ E2 whose
kernel is V . This is actually misleading. Since the definition of essentially finite in the
category VectpX q is intrinsic to this category, V has to be a kernel of q inside the category
VectpX q. This does not imply that V coincides with the kernel K of q in QCohpX q. This
equality holds if X is pseudo-proper and inflexible. If X has the resolution property, that
is all quasi-coherent sheaves are quotients of sums of vector bundles (e.g. when X is a
quasi-projective scheme or a smooth separated scheme), and if the kernel V exists in the
category VectpX q, then V “ K.

In order to avoid the above-mentioned issue, if X is pseudo-proper but not inflexible it
seems to us that the “correct” essentially finite vector bundles to use are vector bundles
coming from a finite stack or at least that are kernel in QCohpX q of a map of finite vector
bundles. Although this is not an intrinsic notion it would be a good working definition.
This should also explain why Lemma 2.13 and Lemma 2.11 should be understood as results
assuring that pushforward preserves essentially finite vector bundles. In any case in the
present paper we consider essentially finite vector bundles only on pseudo-proper and
inflexible fibered categories, so we maintain the notion of essentially finite in Definition
1.5.

There is a partial converse to the fact that vector bundles coming from finite stacks are
essentially finite. If X is a fibered category over k with dimk H0

pOX q ă 8 and V P VectpX q
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is a finite vector bundle, then there exist a map φ : X ÝÑ Φ to a finite stack and W P

VectpΦq such that V » φ˚W . This is essentially proved in [BV, p. 23] (just after the proof
of Lemma 7.11). We recall here the construction for the convenience of the reader. We can
assume that V has rank r and take f ‰ g P Nrxs such that fpV q » gpV q. The group GLr
acts on the scheme I “ Isopfpkrq, gpkrqq “ GLN with N “ fprq “ gprq. The isomorphism
fpV q » gpV q gives a factorization of the vector bundle V : X ÝÑ BGLr through rI{GLrs
and we have Cartesian diagrams

Ω I

X rΩ{GLrs rI{GLrs BGLr

SpecH0pOX q I{GLr

Here we are using that I ÝÑ I{GLr is a geometric quotient and I{GLr is affine because
GLr is geometrically reductive. Thus we must show that Φ “ rΩ{GLrs is a finite stack.
As the geometric fibers of I ÝÑ I{GLr consist (topologically) of one orbit and H0

pOX q is
a finite k-algebra one sees that Φpkq has finitely many isomorphism classes. The action of
GLr on I has finite stabilizers by [BV, Lemma 7.12] and hence it follows that the diagonal
of Φ is quasi-finite. By [BV, Proposition 4.2] it follows that Φ is a finite stack.

Lemma 1.22. Let X be a fibered category which admits an fpqc-atlas from a scheme, and
let u : X ÝÑ Γ be a quasi-compact and quasi-separated map, where Γ is an affine gerbe.
Then u˚ : VectpΓq ÝÑ VectpX q is fully faithful if and only if u# : OΓ ÝÑ u˚OX is an
isomorphism.

Proof. For V, V 1 P VectpΓq the composition

HomΓpV, V
1
q

u˚
ÝÝÑ HomX pu

˚V, u˚V 1q » HomΓpV, u˚u
˚V 1q » HomΓpV, V

1
b u˚OX q

is the map induced by u# : OΓ ÝÑ u˚OX . In particular, if this map is an isomorphism
then u˚ : VectpΓq ÝÑ VectpX q is fully faithful.

Conversely, setting V 1 “ OΓ above, we have that the homomorphism

HomΓpV,OΓq ÝÑ HomΓpV, u˚OX q

induced by u# is an isomorphism for all vector bundles V over Γ. Since u˚OX is a quasi-
coherent sheaf, there is a surjective map a :

À

Vi � u˚OX , where Vi are vector bundles on
Γ [De, p. 132, Corollary 3.9]. The above isomorphism produces a map

À

Vi ÝÑ OΓ whose
composition with u# is a, so we get that u# is surjective. Since u : X ÝÑ Γ is faithfully
flat we also have that u# injective. �

Remark 1.23. If X is a pseudo-proper and inflexible algebraic stack over k and if α : X ÝÑ

ΠN
X is the structure map of the Nori fundamental gerbe, then using Theorem 1.10 and

Lemma 1.22 we conclude that α˚OX » OΠN
X
. The same holds for the Nori étale fundamental

gerbe.
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2. Essentially finite covers and their Nori gerbes

Let k be a base field. In this section we study the notion of an essentially finite cover,
which generalizes the notion of torsor under a finite group scheme. Moreover we are going
to prove Theorem I and Corollary I.

Recall that an essentially finite cover f : Y ÝÑ X of fibered categories is a cover such
that f˚OY is essentially finite as an object of VectpX q (see Definition 1.11).

First observe that a torsor under a finite group scheme is an essentially finite cover.
Indeed, let f : Y ÝÑ X be a torsor under a finite group scheme G over k corresponding to
u : X ÝÑ BG. Then u˚pkrGsq » f˚OY , where krGs is the regular representation. Applying
[BV, Lemma 7.15] to Spec k ÝÑ BG we see that krGs is finite in VectpBGq “ RepG and
thus f˚OY is a finite vector bundle.

Proposition 2.1. Let X be a pseudo-proper and inflexible fibered category over k. Then
there is an equivalence of categories

"

Stacks finite
over ΠN

X

* "

Essentially finite
covers of X

*

Φ

where Φ is the pullback along X ÝÑ ΠN
X . If moreover x P X pkq is a rational point, then

there is an equivalence
"

Essentially finite
covers of X

* "

Finite k-schemes with
an action of πNpX , xq

*

Ψ

where Ψ is the pullback along Spec k
x
ÝÝÑ X . Furthermore, Ψ extends the correspondence

between pointed Nori-reduced torsors of X and quotient group schemes of πNpX , xq.

Proof. The functor Φ is the equivalence mapping ring objects of VectpΠN
X q to ring objects of

EFinpVectpXqq. If x P X pkq, then ΠN
X “ B πNpX , xq, and the ring objects of VectpΠN

X q “

RepπNpX , xq are precisely the finite k-algebras with an action of πNpX , xq. This easily
implies that Ψ ˝ Φ is an equivalence. The last claim follows by construction. �

Lemma 2.2. Let X be a pseudo-proper and inflexible fibered category over k and let
f : Y ÝÑ X an essentially finite cover; let u : X ÝÑ Γ be the monodromy gerbe of
f˚OY P EFinpVectpX qq. Then there exist unique covers ∆ ÝÑ Γ and Π ÝÑ ΠN

X {k which
make the following diagrams

Y Π ∆

X ΠN
X {k Γ

β

v

u

f

α
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Cartesian, and we also have β˚OY » OΠ, v˚OY » O∆. If Y is inflexible then Π, ∆ are
affine gerbes.

Proof. The multiplication map of f˚OY and its unit map lie in VectpΓq Ď VectpX q and
therefore determine a cover

∆ ÝÑ Γ (1)
extending f as claimed in the statement. Uniqueness of the extension follows from the
fact that VectpΓq ÝÑ VectpX q is fully faithful. As u is Nori reduced we have u˚OX » OΓ

(see Lemma 1.22 or [BV, Lemma 7.11, pp. 22]). Since ∆ ÝÑ Γ is flat we also conclude
that v˚OY » O∆. The cover Π ÝÑ ΠN

X {k and its uniqueness plus the fact β˚OY » OΠ are
obtained in exactly the same way.

Assume now that Y is inflexible. By definition, Y ÝÑ ∆ factors through a finite gerbe
∆1, which can be chosen as closed substack ∆1 Ď ∆. But v˚OY » O∆ which implies that
∆ “ ∆1 as required. Notice that, since ΠN

X {k ÝÑ Γ is a quotient, the stack ∆ is a gerbe if
and only if Π is a gerbe. This completes the proof.

�

Proof of Theorem II. The existence of the diagram is clear: firstly ∆,Γ, u are by Lemma
2.2, then Spec pkq ÝÑ ∆ is the image of y P Ypkq, and finally Pf is defined as a product.
Since u : X ÝÑ Γ “ BGf is Nori-reduced so is the Gf -torsor Pf ÝÑ X . The claim
about the monodromy gerbe of π˚OPf

follows from the following fact: if G is a finite
group scheme over k, the regular representation krGs generates RepG because every finite
G-representation is a subobject of some krGsn.

The morphism λ is faithfully flat if and only if Spec k ÝÑ ∆ is faithfully flat. This is
the case if and only if ∆ is a gerbe. In such a situation we have ∆ “ BH, where H is a
subgroup of Gf and Pf

λ
ÝÝÑ Y is an H-torsor. The map u1 : Y ÝÑ ∆ “ BH is Nori-reduced

because u1˚OY » O∆.
The factorization λ “ η ˝λ1 arises from the factorization Spec k ÝÑ ∆1 ÝÑ ∆, where ∆1

is a subgerbe of the finite stack ∆.
For the last statement, h induces an inclusion OY Ă h˚OT , and as f is affine, an inclusion

f˚OY Ă g˚OT . If we denote by xg˚OT y (respectively, xπ˚OPf
y) the full Tannakian sub-

category of EFinpVectpX qq generated by the object g˚OT (respectively, π˚OPf
), one gets

the following diagram with 2-Cartesian square:

VectpBGf q //

u˚

��

VectpBGq

v˚

��

xπ˚OPf
y

x˚ ''

// xg˚OT y

x˚ww

VectpSpec kq

where v : X ÝÑ BG corresponds to the torsor g : T ÝÑ X , the horizontal arrows are
inclusions and the vertical arrows are equivalences. As the torsors are pointed above x,



ESSENTIALLY FINITE COVERS AND TOWERS OF TORSORS 15

the functors x˚ ˝ u˚ and x˚ ˝ v˚ are equivalent to the forgetful functors. Therefore, the
commutativity of this last diagram proves the existence of a surjective morphism ϕ : G ÝÑ
Gf such that u˚ » v˚ ˝ ϕ˚ : VectpBGf q ÝÑ VectpX q. This implies that u “ ϕ1 ˝ v, where
ϕ1 : BG ÝÑ BGf is the morphism of gerbes induced by ϕ. �

Definition 2.3. Let X be a pseudo-proper, inflexible fibered category over k with a base
point x P X pkq, and let f : pY , yq ÝÑ pX , xq be an essentially finite cover. The Galois
closure of f is the pointed torsor Pf ÝÑ X with the pointed map Pf ÝÑ Y constructed
in Theorem II.

Definition 2.4. Let X be a pseudo-proper, inflexible fibered category over k. We call an
essentially finite cover f : Y ÝÑ X inflexible if Y is inflexible.

Remark 2.5. Let X be a pseudo-proper and inflexible algebraic stack of finite type over a
field k of positive characteristic, such that dimk H1

pX , Eq ă 8 for all vector bundles E on
X . Let f : Y ÝÑ X be a Nori-reduced torsor. Then by Theorem I (which will be proved
later) f is inflexible.

Lemma 2.6. Let X be a pseudo-proper, inflexible fibered category with a rational point
x P X pkq. Let f : Y ÝÑ X be an inflexible essentially finite cover equipped with a rational
point y P Ypkq mapping to x. Then the Galois closure Pf of f satisfies:

‚ The Gf -torsor Pf is Nori-reduced.
‚ For any pointed Nori-reduced torsor g : pT , tq ÝÑ pX , xq under a finite group
scheme G, and any pointed X -morphism h : pT , tq Ñ pY , yq, there is a unique
factorization h “ λ ˝ j, where j : pT , tq ÝÑ pPf , pq is equivariant with respect to a
surjective homomorphism G ÝÑ Gf .

Proof. Using Lemma 2.2 one can easily show that when Y is inflexible any map from an
essentially finite cover T to Y is faithfully flat. In view of Theorem II (4) we can conclude
the proof. �

Here are some technical lemmas which will be used in proving Theorem I.

Lemma 2.7. Consider a 2-Cartesian diagram

Y Ψ

X Φ

v

f π

u

where X ,Y ,Φ,Ψ are fibered categories over k which admit fpqc-atlases from schemes, and
u, π are faithfully flat where π is affine and u is quasi-compact and quasi-separated such
that u˚OX » OΦ. Then v˚OY » OΨ, and the two functors u˚ : VectpΦq ÝÑ VectpX q and
v˚ : VectpΨq ÝÑ VectpYq are fully faithful.

A vector bundle V P VectpX q lies in the essential image of u˚ : VectpΦq ÝÑ VectpX q if
and only if f˚V comes from a vector bundle on Ψ.

If π is a surjective cover, a vector bundle V P VectpYq lies in the essential image of
v˚ : VectpΨq ÝÑ VectpYq if and only if f˚V comes from a vector bundle on Φ.



16 M. ANTEI, I. BISWAS, M. EMSALEM, F. TONINI, AND L. ZHANG

Proof. By [BV, Lemma 7.17] and flat base change it follows that
‚ v˚OY » OΨ,
‚ u˚ : VectpΦq ÝÑ VectpX q and v˚ : VectpΨq ÝÑ VectpYq are fully faithful.

Denote by D and C the essential images of these u˚ and v˚ respectively.
Let V P VectpX q. We must show that V P D if and only if f˚V P C. The “only if”

part is clear. Conversely, suppose that f˚V “ v˚W with W P VectpΨq, and consider the
canonical homomorphism u˚u˚V ÝÑ V ; pulling back by f one gets

v˚v˚pf
˚V q “ v˚v˚pv

˚W q ÝÑ v˚W “ f˚V .

This homomorphism is an isomorphism because v˚OY » OΨ. As f is faithfully flat, one
concludes that V » u˚u˚V , and as u is faithfully flat, it follows that u˚V is a vector bundle.
Thus we have V P D.

Assume now that π is a surjective cover; consequently f is also a surjective cover. In
particular, π˚ and f˚ send vector bundles to vector bundles. Given V P VectpYq we must
show that V P C if and only if f˚V P D. The “only if” part is easy: if W P VectpΨq then
f˚pv

˚W q » u˚π˚W because π is affine.
For the converse, assume that f˚V P D, meaning f˚V comes from a vector bundle

on Φ. Since u˚OX » OΦ it follows that u˚pf˚V q is a vector bundle and the canonical
homomorphism u˚u˚pf˚V q ÝÑ pf˚V q is an isomorphism. This homomorphism can also be
obtained by applying f˚ to the canonical homomorphism v˚v˚V ÝÑ V . Since f is affine
this means that the previous homomorphism is an isomorphism. To conclude that V P C
it suffices to show that v˚V is a vector bundle. But v is faithfully flat and v˚pv˚V q is a
vector bundle. Now by descent it follows that v˚V is also a vector bundle. �

Remark 2.8. Consider a G-torsor f : Y Ñ X for an affine group scheme G, where X is
a quasi-compact and quasi-separated algebraic stack, and the corresponding 2-Cartesian
diagram

Y Spec k

X BG

v

f

u

We see that H0
pOYq “ k if and only if u˚OX » OBG. In this case, applying Lemma 2.7, we

conclude that u˚ : VectpBGq ÝÑ VectpX q is fully faithful with essential image the category
of vector bundles V such that f˚V is trivial.
Lemma 2.9 ([No2, p. 264, Lemma 1]). Let X be a quasi-compact and quasi-separated
algebraic algebraic stack and

Z Y

X

h

gf

a 2-commutative diagram, where f and g are torsors for affine group schemes G and H
respectively. Suppose that H0

pOZq “ k. Then there exists a homomorphism ϕ : G ÝÑ H
inducing h.



ESSENTIALLY FINITE COVERS AND TOWERS OF TORSORS 17

Moreover, h is faithfully flat if and only if ϕ : G ÝÑ H is faithfully flat, in which case
h : Z ÝÑ Y is a torsor for the kernel of ϕ. If H{ Impϕq is affine (e.g. if H or G are finite)
then this is also equivalent to the statement that H0

pOYq “ k.

Proof. Consider the morphisms u : X ÝÑ BG and v : X ÝÑ BH corresponding to the
torsors f and g respectively. Since H0

pOZq “ k we have u˚OX » OBG, and hence by
1.22 the pullback functor u˚ : VectpBGq ÝÑ VectpX q is fully faithful. The objects of the
essential image of v˚ : VectpBHq ÝÑ VectpX q are trivialized by g and thus by f . From
Remark 2.8 we obtain a factorization

v˚ : VectpBHq ÝÑ VectpBGq Ď VectpX q

which, by Tannakian duality, is induced by a factorization v : X u
ÝÝÑ BG γ

ÝÝÑ BH. Con-
sider the 2-Cartesian diagrams

Z Spec k

Y U Spec k

X BG BH

w

u

a

g g1

h

γ

We claim that there exists a dashed arrow w as above making the upper diagram 2-
Cartesian. This would imply that the functor γ : BG ÝÑ BH is induced by a group
homomorphism ϕ : G ÝÑ H.

Set f 1 : Spec k ÝÑ BG. Consider the map of OX -algebras λ : g˚OY ÝÑ f˚OZ . Applying
u˚ to λ and using a˚OY » OU , H0

pOZq “ k, we get a map

g1˚OU – g1˚a˚OY – u˚g˚OY ÝÑ u˚f˚OZ – f 1˚OSpec pkq .

Applying Spec BGp´q on both sides we get the arrow w.
To prove that h is the pullback of w we just have to show that the adjunction maps

u˚u˚g˚OY ÝÑ g˚OY and u˚u˚f˚OZ ÝÑ f˚OZ

are isomorphisms. But the adjunction map for g˚OY coincides with the following compo-
sition:

u˚u˚g˚OY – u˚g1˚a˚OY – u˚g1˚OU – g˚OY

which is an isomorphism, and the same is true for f˚OZ .
The map h is faithfully flat if and only if w is faithfully flat. By Lemma 1.17 this is

the case if and only if ϕ : G ÝÑ H is surjective, so that U “ BpKerpϕqq. The condition
that H0

pOYq “ k is equivalent to the condition that v˚OX » OBH and, by Lemma 1.22,
to the full faithfulness of the functor γ˚ : VectpBHq ÝÑ VectpBGq. This last condition is
equivalent to the surjectivity of ϕ : G ÝÑ H when H{ Impϕq is affine (see [TZ1, Remark
B.7]). �

Lemma 2.10. Let X be an algebraic stack over a field k, A a finite and local k-algebra
with residue field k and F P VectpX ˆ SpecAq. Let X i

ÝÝÑ X ˆ SpecA
f
ÝÝÑ X be the maps
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corresponding to k ÝÑ A ÝÑ k. Then there is a sequence of surjective maps of vector
bundles

f˚F “ GN ÝÑ GN´1 ÝÑ ¨ ¨ ¨ ÝÑ G1 ÝÑ G0 “ 0

such that KerpGl ÝÑ Gl´1q » i˚F for all 1 ď l ď N .

Proof. Consider a decomposition series of A-modules

A “ AN ÝÑ AN´1 ÝÑ ¨ ¨ ¨ ÝÑ A1 ÝÑ A0 “ 0 ;

the above maps are surjective with KerpAl ÝÑ Al´1q » k as A-modules for all 1 ď l ď N .
Let p : X ˆ SpecA ÝÑ SpecA be the projection; consider the functor

Ψ “ f˚pF b p˚p´qq : ModA ÝÑ QCohpX q .
Since p is flat, F is a vector bundle, and as f is affine the functor Ψ is exact. Moreover
ΨpAq “ f˚F and

Ψpkq “ f˚pF b p˚kq » f˚pF b i˚OX q » f˚i˚i
˚F » i˚F .

Applying Ψ to the above sequence of A-modules we find the desired sequence. �

Lemma 2.11. Let X be a pseudo-proper and inflexible algebraic stack of finite type over
a field k of positive characteristic, such that dimk H1

pX , Eq ă 8 for all vector bundles E
on X . Let f : Y ÝÑ X be an essentially finite cover. Then for all maps φ : Y ÝÑ Φ to a
finite stack over k, and for all W P VectpΦq, the vector bundle f˚φ˚W is essentially finite
in VectpX q.

Proof. To avoid problems with different ranks, we first observe that the rank of W can be
assumed to be constant, for instance, by considering the connected components of Φ. By
Lemma 2.2 we have a Cartesian diagram

Y ∆

X Γ

v

u

f

where Γ is a finite gerbe. We will prove that there exists a surjective cover s : X 1 ÝÑ X
such that s˚f˚φ˚W is free on the connected components of X 1; this will be done by only
assuming that there is a Cartesian diagram as above with Γ a finite gerbe and f finite, but
without requiring that X is inflexible, as this will allow us to replace X by any surjective
cover of it. The lemma then follows from Theorem 1.15.

As mentioned above, if s1 : T 1 ÝÑ X is a surjective cover we can always replace X by
T 1. Let L{k be a finite field extension with a map SpecL ÝÑ Y . The base change of
SpecL ÝÑ Y ÝÑ ∆ ÝÑ Γ along X ÝÑ Γ is a surjective cover Q ÝÑ X . Replacing
X by Q we can assume that X ÝÑ Γ factors as X ÝÑ SpecL ÝÑ Γ. This means that
Y f
ÝÝÑ X is the projection X ˆL A ÝÑ X , where A{L is a finite L-algebra. Since φ factors

as Y ÝÑ Φ ˆk L ÝÑ Φ we can assume that L “ k. Extending again k we can further
assume that A is a product of local k-algebras with residue field k. Splitting Y according
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to the decomposition of A we can assume that A is also local. Let i : X ÝÑ Y “ X ˆ A
be the inclusion corresponding to A ÝÑ k.

Finally consider a surjective cover T ÝÑ Φ from a finite scheme and the 2-Cartesian
diagram

Z T

X Y Φ
i φ

Replacing X by Z we can assume that φ ˝ i : X ÝÑ Φ factors through a finite scheme,
which in particular implies that i˚φ˚W is free. Applying Lemma 2.10 to F “ φ˚W we
obtain a sequence of surjective homomorphisms of quasi-coherent sheaves on X

f˚pφ
˚W q “ GN ÝÑ GN´1 ÝÑ ¨ ¨ ¨ ÝÑ G1 ÝÑ G0 “ 0

with free kernels. The final cover trivializing f˚pφ˚W q exists due to Lemma 1.19. �

Remark 2.12. Assume char k “ 0. Then the proof of Lemma 2.11 would not work
anymore. The problem is that Lemma 1.19 holds only in positive characteristic:

Let ExtpO,Oq be the stack over Aff{k which associates with each T P Aff{k the groupoid
of extensions of the form

0 ÝÑ OT ÝÑ E ÝÑ OT ÝÑ 0

where E is a quasi-coherent sheaf on T . A morphism between two extensions is given by
a commutative diagram

0 // OT
// E

φ
��

// OT
// 0

0 // OT
// E 1 // OT

// 0

One checks readily that ExtpO,Oq is a trivial gerbe underGa, or in other words ExtpO,Oq “
BGa. Now let X “ X be a proper geometrically connected reduced scheme over k which
admits a non-trivial extension of quasi-coherent sheaves:

0 ÝÑ OX ÝÑ E ÝÑ OX ÝÑ 0

If the conclusion of Lemma 1.19 was true in this case, then E is essentially finite by
Theorem 1.15. Let Γ be the monodromy gerbe of E in EFinpVectpXqq. Then we have the
following commutative diagram

X //

��

ExtpO,Oq “ BGa

Γ
λ

77

due to the full faithfulness of the pullback VectpΓq ÝÑ EFinpVectpXqq and the fact that OX

and E come from VectpΓq. The map λ is non-trivial because its composition with X ÝÑ Γ
is non-trivial. But by [DG, Chapitre IV, §2, no1, 1.1, pp. 483] Ga has no non-trivial finite
subgroup in characteristic 0 and therefore λ has to be trivial, a contradiction.
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However, Lemma 2.11 still holds true in characteristic 0 when Y is inflexible. This is
due to Lemma 2.13 and Proposition 2.14 below.

Lemma 2.13. Let X be a pseudo-proper and inflexible algebraic stack of finite type over
k, and let f : Y ÝÑ X be an étale surjective cover. Then for all maps φ : Y ÝÑ Φ to
a finite (respectively, finite and étale) stack over k and for all W P VectpΦq, the vector
bundle f˚pφ˚W q is essentially finite (respectively, essentially finite with étale monodromy
gerbe) in VectpX q. In particular, f is essentially finite.

Proof. There exists a Cartesian diagram

\iZ Y

Z X

a

r

fb

where r : Z ÝÑ X is an étale surjective cover. Since a˚φ˚W also comes from the finite
stack Φ, taking a finite atlas of Φ we can find a surjective cover λ : U Ñ

Ů

iZ which
trivializes it. Denote by Ui the inverse image of the i-th piece of

Ů

iZ under λ. Then
r˚f˚φ

˚W “ b˚a
˚φ˚W is trivialized by the surjective cover U1ˆZ ˆ ¨ ¨ ¨ˆZ Un ÝÑ Z. Thus,

by Remark 1.16, f˚φ˚W is essentially finite and it has an étale monodromy gerbe if Φ is
étale (so that λ can also be chosen to be étale). �

Proof of Theorem I. By Lemma 2.2 there are 2-Cartesian diagrams

Y Π ∆

X ΠN
X Γ

β

α

f π

where Γ is the monodromy gerbe of f˚OY P EFinpVectpX qq. It also follows from Lemma
2.2 that Π is a gerbe if Y is inflexible.

For the converse assume that Π is a gerbe. By Remark 1.23 and Lemma 2.7, the pullback
functor β˚ : VectpΠq ÝÑ VectpYq is fully faithful with essential image the full subcategory
C of VectpYq of vector bundles V such that f˚V P EFinpVectpX qq. Since Π ÝÑ ΠN

X is
faithful the gerbe Π is profinite, so we have C Ď EFinpVectpYqq. We will show that this
is an equality and that Y is inflexible. This would immediately imply that Y ÝÑ Π is
the Nori fundamental gerbe. Let φ : Y ÝÑ Φ be a map to a finite stack. Using Lemma
2.13 (notice that since Π is gerbe, ∆ is also a gerbe, so if char k “ 0 then ∆ ÝÑ Γ and
f : Y ÝÑ X are étale covers) and Lemma 2.11 it follows that φ˚W P C for allW P VectpΦq.
Thus the pullback by φ : Y ÝÑ Φ has a factorization

VectpΦq ÝÑ VectpΠq » C Ď VectpYq .
By Remark 1.20 one gets a factorization Y ÝÑ Π ÝÑ Φ as required. This shows that
Y ÝÑ Π is a Nori fundamental gerbe and, in particular, Y is inflexible. Since Y is pseudo-
proper, all essentially finite vector bundles on Y are pullbacks from some finite gerbe. Thus
the above factorization also implies the equality C “ EFinpVectpYqq.
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Notice that if Y is inflexible then one always has H0
pOYq “ k (see Remark 1.8).

The étale case. Assume that f is étale and that H0
pOYq “ k. By Lemma 2.7 we have

H0
pO∆q “ k. In particular, ∆ is geometrically connected. Since ∆ ÝÑ Γ is étale, it follows

that ∆ is also geometrically reduced. Using [BV, Proposition 4.3] we conclude that ∆ and
therefore Π are gerbes. Thus Y is inflexible. By Lemma 2.13 we see that Γ is étale. In
particular there are 2-Cartesian diagrams

Y ΠN
Y Π1 ∆

X ΠN
X ΠN,ét

X Γ

f

We want to show that Π1 “ ΠN,ét
Y . By Lemma 2.7 the pullback VectpΠ1q ÝÑ VectpYq is

fully faithful and its essential image C consists of vector bundles V P VectpYq such that
f˚V comes from ΠN,ét

X . One must show that the essential image D of the fully faithful
map VectpΠN,ét

Y q ÝÑ VectpYq coincides with C. The vector bundles in D are the essentially
finite vector bundles with étale monodromy gerbes. Since the map Π1 ÝÑ ΠN,ét

X is faithful,
it follows that Π1 is proétale, so that C Ď D. The opposite inclusion instead follows from
Lemma 2.13.

The torsor case. Assume that f is a torsor for a finite group scheme G. Since the regu-
lar representation krGs generates Rep pGq as k-Tannakian category, there are 2-Cartesian
diagrams

Y β
//

f

��

Π

π

��

// ∆ //

��

Spec pkq

��

X α
// ΠN

X
// // Γ // BG

and the map Γ ÝÑ BG is faithful and, by [TZ1, Remark B.7], affine. In particular ∆ is
a finite scheme, and by Lemma 2.7 we can conclude that ∆ “ Spec pH0

pOYqq. Now the
theorem follows because Y is inflexible if and only if ∆ is a gerbe. �

Proof of Corollary I. The Nori gerbe of X is ΠN
X “ B πNpX , xq, and X ÝÑ B πNpX , xq

maps x to the trivial torsor. If pY , yq f
ÝÝÑ pX , xq is an essentially finite cover, then the

extension Π ÝÑ ΠN
X defined in Theorem I is described by the 2-Cartesian diagrams

Spec k πNpX , xq rX Spec k

Yx Y rYx{πNpX , xqs

Spec k X B πNpX , xq

1

y

x

f

that is Π “ rYx{πNpX , xqs. Again by Theorem I we know that Y is inflexible if and only
if Π is a gerbe. On the other hand, the following three conditions are equivalent:
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‚ Π is a gerbe,
‚ Spec k ÝÑ Π is faithfully flat, and
‚ the orbit map πNpX , xq ÝÑ Yx of y is faithfully flat.

When these equivalent conditions hold, by Theorem I we have Π “ B πNpY , yq and Yx »
πNpX , xq{πNpY , yq. The equivalence of categories in the statement follows easily from
Proposition 2.1.

Let f : pY , yq ÝÑ pX , xq be an essentially finite cover with Y inflexible. If f is a torsor
under a group G, using Lemma 1.17 (1) the last diagram in Theorem I tells that πNpY , yq
is normal in πNpX , xq with quotient G. Conversely, if πNpY , yq is normal in πNpX , xq with
quotient G, then using again Lemma 1.17 (1), BπNpY , yq ÝÑ B πNpX , xq and its base
change f : Y ÝÑ X is torsor under G.

For the last claim, considering the above Cartesian diagrams we see that the following
three are equivalent:

‚ f is étale,
‚ Π “ B πNpY , yq ÝÑ B πNpX , xq is étale,
‚ Yx » πNpX , xq{πNpY , yq ÝÑ Spec k is étale.

This completes the proof. �

Proposition 2.14. Let X be a pseudo-proper and inflexible fibered category over k and
f : Y ÝÑ X be a cover. The following are equivalent:

(1) Y is inflexible, f is essentially finite and f˚OY has étale monodromy gerbe in
EFinpVectpX qq.

(2) f is étale and H0
pOYq “ k.

Proof. The implication p2q ùñ p1q follows from Lemma 2.13 and Theorem I. For the
converse, let ∆ ÝÑ Γ be as in Lemma 2.2. Since Y is inflexible it follows that ∆ is a gerbe.
Moreover by hypothesis Γ is étale. Thus ∆ is étale too because ∆ ÝÑ Γ is faithful. By
base change it follows that f is étale. �

3. Towers of torsors and their Galois closures

Let k be a base field and G and H be finite group schemes over k. In this section we
introduce the notion of tower of torsors and Galois closure of a tower of torsors. At the
end of the section Theorems 3.9 and III will be proved.

Definition 3.1. A pG,Hq-tower of torsors over a fibered category X over k is a sequence
of map of fibered categories Z h

ÝÝÑ Y g
ÝÝÑ X where g is a G-torsor and h is an H-torsor.

When G,H are clear from the context we will just talk about a tower of torsors. The
pG,Hq-tower is called pointed over k if Z ÝÑ X (and therefore Y ÝÑ X ) is a pointed
cover over k.
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We define the stack BpG,Hq as the stack over Aff{k whose section over an affine scheme
U is the groupoid of pG,Hq-tower of torsors over U . A morphism between two pG,Hq-
towers Z h

ÝÝÑ Y g
ÝÝÑ X and Z h1

ÝÝÑ Y 1 g1
ÝÝÑ X is a commutative diagram

Z b
//

h
��

Z 1

h1

��

Y a
// Y 1

of X´maps such that a is G-equivariant and Z ÝÑ Z 1 ˆY 1 Y is H-equivariant. Clearly,
a, b are isomorphisms so that the stack BpG,Hq is a groupoid.

Let us start with a preliminary remark:

Remark 3.2. A tower of torsors over a fibered category X is the same as a map X ÝÑ

BpG,Hq. Moreover BpG,Hq has a universal tower given by

W Spec k

HomkpG,BHq BH Spec k

BpG,Hq BG

u

where u is the restriction along 1 : Spec k ÝÑ G. The pullback of the above tower along a
map X ÝÑ BpG,Hq yields exactly the tower encoded in the map X ÝÑ BpG,Hq.

Proposition 3.3. The stack BpG,Hq is algebraic, locally of finite type over k and has
affine diagonal.

Proof. The stack BpG,Hq is algebraic and locally of finite type over the field k because
HomkpG,BHq is so by [HR, Theorem 3] and the fact that there is a finite and flat map

HomkpG,BHq ÝÑ BpG,Hq

by Remark 3.2.
Now let Pi ÝÑ P 1i ÝÑ T , i “ 1, 2, be two towers ξi P BpG,HqpT q for some affine

scheme T , and set I “ IsoBpG,Hqpξ1, ξ2q. We need to show that I is affine. We denote by
p´qT the base change to T . Base changing along P 11 ˆT P 12 ÝÑ T allows us to assume that
P 1i “ GT . In particular, there is a map a : I ÝÑ GT “ AutGT pGT q and we want to show that
it is affine. If W is the fiber of a along a map T g

ÝÝÑ GT , it is enough to show that W is
affine. Let P 2 ÝÑ GT be the H-torsor base change of P2 ÝÑ GT along the multiplication
GT ÝÑ GT by g and set J “ IsoHGT

pP1, P 2q ÝÑ GT . It is easy to see that W “ WGT
pJq,

where WGT
pJq is the Weil restriction of J along GT ÝÑ T . The scheme J is affine and

finitely presented over GT . Since GT ÝÑ T is a cover using a presentation of J it is easy
to write W as a closed subscheme of an affine space over T . �
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Lemma 3.4. Let X be a pseudo-proper and inflexible algebraic stack of finite type over k,
and let Z h

ÝÝÑ Y g
ÝÝÑ X be a pG,Hq-tower of torsors. If char k ą 0 assume that either g

or h is étale or dimk H1
pX , Eq ă 8 for every vector bundle E on X . Then g ˝ h is an

essentially finite cover.

Proof. Consider the morphism v : Y ÝÑ BH corresponding to the H-torsor h : Z ÝÑ Y .
One knows that h˚OZ “ v˚pkrHsq, where krHs denotes the regular representation. One
then concludes the proof by Lemma 2.11 and Theorem 3.9. �

Lemma 3.5. Let P ÝÑ G ÝÑ Spec k be a rational point ξ of BpG,Hq in which G ÝÑ

Spec k is the trivial G-torsor, and let p P P pkq be a rational point mapping to 1 P Gpkq,
and let Qξ “ AutBpG,Hqpξq. Then Qξ is an affine group scheme of finite type over k, and
there are exact sequences

0 ÝÑ WG{kpAutHG pP qq ÝÑ Qξ
α
ÝÝÑ G, 0 ÝÑ W 1

ÝÑ WG{kpAutHG pP qq
β
ÝÝÑ H

where α forgets the automorphism of P , WG{k denotes the Weil restriction and β is the
evaluation at 1: Spec k ÝÑ G.

There is a fully faithful map BQξ ÝÑ BpG,Hq sending the trivial torsor to ξ and whose
image consists of the substack of towers locally isomorphic to ξ.

Proof. The scheme Qξ is affine of finite type by Proposition 3.3. The first sequence is
clear. The map β is well-defined because the point p P P pkq gives an H-equivariant
isomorphism between H and the base change of P ÝÑ G along the identity: the base
change of AutHG pP q ÝÑ G along the identity is AutHk pHq “ H. The last claim is standard.

�

More can be said in the case of the trivial tower.

Lemma 3.6. Let Q be the sheaf of automorphisms of the trivial tower

GˆH ÝÑ G ÝÑ Spec k

in BpG,Hq. Then Q is an affine group scheme of finite type,

Q “ WGpHqnG

whereWGpHq is the Weil restriction of the group scheme HˆkG over G along G ÝÑ Spec k
with G acting on WGpHq via automorphisms of the base. Evaluation at 1 P G yields a map
WGpHq ÝÑ H and, if W 1 is the kernel, then

WGpHq “ W 1 nH .

The fully faithful map BQ ÝÑ BpG,Hq of Lemma 3.5 corresponds to the pointed tower of
Nori-reduced torsors

BW 1
ÝÑ BWGpHq ÝÑ BQ .

If G or H is étale over k then Q is a finite group scheme.
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Proof. Consider the maps α and β defined in Lemma 3.5. We have P “ GˆH, so that

AutHG pP q “ H ˆG ÝÑ G .

Moreover it is easy to see that both α and β are surjective. The map

G ÝÑ Q , g ÞÝÑ ptg ˆ idH , tgq ,

where tg is the multiplication by g, produces the first decomposition. The map HpT q ÝÑ
HpGˆ T q “ WGpHqpT q produces the second decomposition.

The claim about the tower of BQ is an easy consequence of Lemma 1.17.
Now assume that G or H are étale. We can also assume that k is algebraically closed,

so that G or H are constant. If G is constant then WGpHq “ H#G is a finite scheme and
therefore Q is finite. Thus assume H constant. The map Gred ÝÑ G, where p´qred denotes
the reduction, is a nilpotent closed immersion and, since H is étale, it follows that the map
WGpHq ÝÑ WGred

pHq is an isomorphism. But Gred is equal to the étale quotient Gét of G
(because k is perfect) and again we conclude that WGred

pHq is finite. �

Proposition 3.7. If G or H is étale then the map BQ ÝÑ BpH,Gq is an equivalence,
where Q is the sheaf of automorphisms of the trivial tower G ˆ H ÝÑ G ÝÑ Spec k in
BpG,Hq. In particular, BpG,Hq is a finite neutral gerbe over k.

Proof. In view of Lemma 3.6 it suffices to show that any tower is fpqc locally trivial.
Let P ÝÑ P 1 ÝÑ U be a tower over an affine scheme. Using base changing along

P ÝÑ U we may assume this map has a section, so that, in particular, P 1 “ U ˆ G. We
can also assume that k is algebraically closed, so that G or H is constant. If G is constant,
P ÝÑ U ˆG is given by a number #G of H-torsors over U and, trivializing those torsors,
one gets a trivialization of P ÝÑ UˆG. Now consider H to be étale. Since P ÝÑ UˆG is
étale and UˆGred ÝÑ UˆG is a nilpotent closed immersion we conclude that P ÝÑ UˆG
has a section if and only if its restriction to U ˆ Gred is trivial. Thus we reduce to the
known case where G “ Gred “ Gét is étale. �

We now move to the problem of finding a Galois closure for a given tower of torsors.

Definition 3.8. Let X be a fibered category, and let Z ÝÑ Y ÝÑ X be a pG,Hq-tower
of torsors. A Galois envelope for the pG,Hq-tower consists of the following data:

‚ a finite group scheme G with homomorphisms of group schemes α : G ÝÑ G and
Kerpαq ÝÑ H,

‚ a G-torsor P ÝÑ X together with a factorization P ÝÑ Z such that P ÝÑ Y is
G-equivariant and P ÝÑ Z is Kerpαq-equivariant.

We say that the Galois envelope is Nori-reduced if the G-torsor P ÝÑ X is Nori-reduced.
If Z ÝÑ X is an essentially finite cover, and if the Galois envelope P ÝÑ X coincides with
the Galois closure of the essentially finite cover, then we call P ÝÑ X the Galois closure
for the pG,Hq-tower.

Now we get a beautiful Galois envelope for the case when either G or H is étale:

Theorem 3.9. If X is a category fibered over k and G or H is étale then
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(1) every pG,Hq-tower of torsors Z h
ÝÝÑ Y g

ÝÝÑ X is an essentially finite cover and,
(2) it admits a canonical Galois envelope η : P ÝÑ X , λ : P ÝÑ Z, where η is a torsor

under the finite group scheme Q representing the sheaf of automorphisms of the
trivial tower GˆH ÝÑ G ÝÑ Spec k;

(3) the map λ is a torsor under a finite subgroup scheme of Q;
(4) if X is pseudo-proper and inflexible, then η : P ÝÑ X is the Galois closure for

the pG,Hq-tower if and only if the corresponding map X ÝÑ BpG,Hq “ BQ is
Nori-reduced.

Proof. By Lemma 3.6 and Proposition 3.7 we have BpG,Hq “ BQ, with universal tower
BW 1 b

ÝÝÑ BWGpHq
a
ÝÝÑ BQ. The Q-torsor Spec k ÝÑ BQ with splitting Spec k ÝÑ

BW 1 gives a Galois closure of the universal tower. Now for any pG,Hq-tower X ÝÑ

BpG,Hq “ BQ, the Galois envelope P ÝÑ X is just the pullback of Spec k ÝÑ BQ
along X ÝÑ BpG,Hq “ BQ. Since pg ˝ hq˚OZ is the pullback of pa ˝ bq˚OBW 1 along
X ÝÑ BpG,Hq “ BQ, it is essentially finite. This finishes (1), (2), (3).

Let xpa ˝ bq˚OBW 1y be the full Tannakian subcategory of BQ generated by pa ˝ bq˚OBW 1

with Galois group Q1. Then the surjection Q� G factors as Q� Q1 � G. Let W be the
inverse image of Q1 under WGpHq ãÑ Q. Then we have a Cartesian diagram

BW 1

b
��

BWGpHq

a

��

c
// BW

��

BQ // BQ1

By Lemma 2.7 we see that b˚OBW 1 is a pullback of a vector bundle on BW . By the same
argument of Lemma 2.2 we can complete the arrows b, c to a Cartesian diagram where the
northeastern Vertex is a gerbe. This implies that KerpWGpHqq

c
ÝÝÑW is contained in W 1,

so BWGpHq ÝÑ BH factors through c. In this way we obtain a tower for the stack BQ1.
By the universal property of the tower on BQ we conclude Q “ Q1. Thus the regular
representation of Q (i.e. the pushforward of OSpec k along Spec k ÝÑ BQ) is a subquotient
of fppa ˝ bq˚OBW 1 , pa ˝ bq˚OBW 1q for some fpX, Y q P NrX, Y s. Conversely, pa ˝ bq˚OBW 1 is
obviously a subobject of the regular representation of Q.

If X pseudo-proper and inflexible, then the above shows that the Tannakian subcategory
of EFinpX q generated by η˚OP is the same as the essential image of the pullback functor
VectpBQq ÝÑ EFinpX q (which is the Tannakian subcategory generated by pg ˝ hq˚OZ).
Thus P ÝÑ X is identified with the Galois closure Pf of Z f :“g˝h

ÝÝÝÝÑ X constructed in
Theorem II if and only if X ÝÑ BQ is Nori-reduced. �

The following lemma shows that a pointed tower Z ÝÑ Y ÝÑ X has a Galois closure.
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Theorem 3.10. Let X be a pseudo-proper and inflexible algebraic stack of finite type over
k and Z h

ÝÑ Y g
ÝÑ X a pointed tower of torsors. If char k ą 0, assume that either g is étale

or dimk H1
pX , Eq ă 8 for every vector bundle E on X . Then the following hold:

(1) f : Z ÝÑ X is essentially finite,
(2) the map ω : X ÝÑ BpG,Hq corresponding to the tower factors through the mon-

odromy gerbe X φ
ÝÝÑ Γ “ BGf of f˚OZ in EFinpVectpX qq and

(3) the Gf -torsor Pf ÝÑ X and the factorization Pf ÝÑ Z introduced in Theorem II
define a Galois closure for the pG,Hq-tower Z ÝÑ Y ÝÑ X .

Moreover, the group scheme Gf is a finite subgroup of the affine and finite type k-group
scheme AutBpG,Hqpωpxqq, where x is the given rational point of X .

Proof. The cover f : Z ÝÑ X is essentially finite by Lemma 3.4. We want to extend the
given tower along X φ

ÝÝÑ BGf as in the diagram below. Using the notation of Theorem
II (but the map f : Y ÝÑ X there is replaced by f : Z ÝÑ X in our case), according to
Lemma 2.9 there exists a morphism of group schemes Gf ÝÑ G inducing the morphism
Pf ÝÑ Y . By Lemma 2.2 the cover Z ÝÑ X extends to a cover ∆ ÝÑ BGf . Let
U :“ BGf ˆBG Spec k. We have the following Cartesian diagrams:

Pf Z Y X

Spec k ∆ U BGf
a b

where the dashed arrows come from the existing maps Pf ÝÑ Z (for a) and Z ÝÑ Y (for
b) and the full faithfulness of VectpBGf q ÝÑ VectpX q. We must equip b : ∆ ÝÑ U with a
compatible structure of H-torsor. Notice that, by Lemma 2.7, a vector bundle on Y whose
pullback to Z is free (and thus comes from a vector bundle on ∆) comes from a vector
bundle on U . Moreover Lemma 2.7 also tells us that VectpUq ÝÑ VectpYq is fully faithful.
This shows that we get a factorization

VectpBHq ÝÑ VectpUq ÝÑ VectpYq

and, by Tannakian duality, a factorization Y ÝÑ U ÝÑ BH. This determines an H-torsor
∆1 ÝÑ U extending Z ÝÑ Y . Since VectpUq ÝÑ VectpYq is fully faithful one concludes
that ∆1 » ∆ over U .

Let K be the kernel of Gf ÝÑ G. The map Spec k ÝÑ U factors through a closed
immersion BK ÝÑ U and the composition BK ÝÑ U ÝÑ BH preserves trivial torsors,
meaning it is induced by a homomorphism K ÝÑ H. It is easy to show that all the data
constructed define a Galois envelope of the original tower with Galois group G “ Gf .

For the last claim, set ξ “ ωpxq and Q “ AutBpG,Hqpξq. By hypothesis the tower
ξ is pointed and therefore, by Lemma 3.5, the group scheme Q is affine and of finite
type and there is a fully faithful map BQ ÝÑ BpG,Hq whose essential image is the full
substack of BpG,Hq of towers which are fpqc locally isomorphic to ξ. Since ω factors
as X ÝÑ BGf ÝÑ BpG,Hq, all objects in the image of BGf ÝÑ BpG,Hq are locally
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isomorphic to ξ. Thus the previous morphism factors through BGf ÝÑ BQ. This map
preserves trivial torsors and it is therefore induced by a map Gf

q
ÝÝÑ Q. Let G be the

image of q. The factorization
X ÝÑ BGf ÝÑ BG ÝÑ BQ Ď BpG,Hq

tells us that the tower over X extends to a tower over BG and therefore f˚OZ comes from a
vector bundle on BG. But BGf is exactly the monodromy gerbe of f˚OZ in EFinpVectpX qq,
which implies that Gf “ G Ď Q. �

Proof of Theorem III. The closure we consider is the one in Theorem 3.10. Statement (1)
follows by applying Theorem I and lemma 2.9 to both X and Y as bases. Statement (2)
follows from the last statement of Theorem 3.10. �

4. The S-fundamental gerbe of essentially finite covers

The aim of this section is to prove Theorem IV. We start by introducing the S-fundamental
gerbe, which generalizes the notion of S-fundamental group (see [BPS], [La1], [La2]).

Definition 4.1. A vector bundle V on a fibered category X is called Nori semistable if for
all smooth projective curves C over an algebraically closed field and all maps i : C ÝÑ X
the pullback i˚V is semistable of degree 0.

We denote by NspX q the full subcategory of VectpX q of Nori semistable vector bundles.
The S-fundamental gerbe of a fibered category X over k is an affine gerbe Π over k

together with a map u : X ÝÑ Π whose pullback u˚ : VectpΠq ÝÑ VectpX q is fully faithful
with essential image NspX q. The S-fundamental gerbe is unique and is denoted by ΠS

X {k
when it exists.

If X has an S-fundamental gerbe Ψ: X ÝÑ ΠS
X {k and x P X pkq, then the S-fundamental

group πSpX {k, xq of pX , xq over k is the sheaf of automorphisms of ψpxq P ΠS
X {k.

We will usually drop the {k when k is clear from the context.

Remark 4.2. A fibered category X over k has an S-fundamental gerbe if and only if
H0
pOX q “ k and NspX q is an abelian subcategory of QCohpX q. The “only if” is clear.

For the converse observe that NspX q is a rigid monoidal category. If it is also an abelian
subcategory of QCohpX q then NspX q is k-Tannakian and the map NspX q ÝÑ VectpX q
sends exact sequences to exact sequences in QCohpX q. By Tannakian duality NspX q »
VectpΠq, where Π is an affine gerbe, and by Remark 1.20, the inclusion NspX q Ď VectpX q
is realized as the pullback of a map X ÝÑ Π, that is Π “ ΠS

X .

Remark 4.3. If X is a fibered category with an S-fundamental gerbe, then its profinite
quotient is a Nori fundamental gerbe. In particular X is inflexible. Indeed since finite
vector bundles on X are Nori semistable, we have

EFinpVectpX qq “ EFinpNspX qq
is also a k-Tannakian category by Theorem 1.10 and that it is an abelian subcategory of
QCohpX q. From Remark 1.20 and Remark 1.21 it follows that the affine gerbe associated
to EFinpNspX qq, which is the profinite quotient of ΠS

X , is a Nori fundamental gerbe for X .
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Remark 4.4. Let φ : X 1 ÝÑ X be a map of fibered categories and F P VectpX q. If F is
Nori semistable then φ˚F is Nori semistable too. The converse holds if φ is representable
(by a scheme), proper and surjective. Indeed one can assume that X is a proper, smooth,
integral curve over an algebraically closed field k and must prove that F is semistable of
degree 0. Considering a closed point in the generic fiber of φ and taking the normalization
of its closure one can moreover assume that X 1 is also a proper, smooth, integral curve
over k. In particular φ is a cover. In this case the result follows because the pullback of a
subbundle destabilizing F actually destabilizes φ˚F .

Example 4.5. If X is a smooth, geometrically connected and geometrically projective
scheme over k thenX has an S-fundamental gerbe over k (see [BPS], [La1], [La2]). Recently,
it is shown in [BHD, Theorem 6.7] that if X is a reduced algebraic k-scheme which is
connected by proper chains (see [BHD, Definition 6.1]), where k is algebraically closed,
then X has an S-fundemental gerbe over k.

Proposition 4.6. An affine gerbe Γ over k has an S-fundamental gerbe over k.

Proof. In view of Remark 4.2 we need to show that NspΓq is an abelian subcategory of
QCohpΓq. So let

0 ÝÑ K ÝÑ F1 ÝÑ F2 ÝÑ Q ÝÑ 0

be an exact sequence in QCohpΓq with F1, F2 P NspΓq. We must show that K,Q P NspΓq.
Let i : C ÝÑ Γ be a map from a smooth projective curve over some algebraically closed field.
Since Γ is a gerbe, both K and Q are vector bundles. Thus i˚K and i˚Q are respectively
kernel and cokernel, in QCohpCq, of a homomorphism between Nori semistable vector
bundles on C. Since NspCq is an abelian subcategory of QCohpCq, it follows that i˚K and
i˚Q are in NspCq. �

Lemma 4.7. Let X be a pseudo-proper and inflexible category over k, and let f : Y ÝÑ X
be an essentially finite cover. Then

NspYq “ tV P VectpYq | f˚V P NspX qu

Proof. Given F P VectpYq we have to prove that

F P NspYq ðñ f˚F P NspX q .
Nori semistability is tested on curves. Thus we can assume that X “ C is a smooth,
integral, projective curve over an algebraically closed field k: for “ùñ” we know that
F P NspYq and we must prove that f˚F P NspCq; for “ðù” we have a section C i

ÝÝÑ Y ,
we know that f˚F P NspCq and we must prove that i˚F P NspCq. Here we are using the
following: since X is pseudo-proper and inflexible, the pullback of f˚OX along the curve
C ÝÑ X is still essentially finite; see Remark 1.21.

Let C ÝÑ Γ be the monodromy gerbe of f˚OY in EFinpVectpCqq and ∆ ÝÑ Γ the
extension given in Lemma 2.2. We have Γ “ BG for some finite group scheme G so that
the map C ÝÑ BG is given by a G-torsor Q ÝÑ C. Let D be the normalization of an
irreducible component of Q surjecting onto C. It follows that g : D ÝÑ C is a surjective
cover. Since a vector bundle on C is Nori semistable if and only if its pullback via g is so
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(see Remark 4.4), we can replace C by D, that is assume that C ÝÑ BG factors through
Spec k. Since the cover Y ÝÑ C extends to BG we know that f : Y “ C ˆA ÝÑ C is the
projection, where A{k is a finite k-algebra. Splitting Y according to a decomposition of A
we can moreover assume A local. In the case “ðù” the inclusion i : C ÝÑ Y “ C ˆ A is
induced by A ÝÑ k. This map is also defined in the case “ùñ” and we denote it with the
same symbol i.

We may replace C by another test curve. Hence it is enough to prove that f˚F is
semistable of degree 0 if and only if i˚F is so. From Lemma 2.10 we obtain a sequence of
surjective homomorphisms of vector bundles

f˚F “ GN ÝÑ GN´1 ÝÑ ¨ ¨ ¨ ÝÑ G1 ÝÑ G0 “ 0

such that KerpGl ÝÑ Gl´1q » i˚F . By induction we have

detpf˚F q » pdet i˚F qN

so that f˚F has degree 0 if and only if i˚F has degree 0. Again by induction we also see that
all Gl have the same slope as that of i˚F . In particular if f˚F is semistable so is i˚F Ď f˚F .
The converse is deduced from the following fact: if 0 ÝÑ E 1 ÝÑ E ÝÑ E2 ÝÑ 0 is an
exact sequence of vector bundles on C with equal slope then E is semistable if E 1 and E2
are semistable. �

Proof of Theorem IV. The first claim follows from Remark 4.3. In particular by Theorem
I we have 2-Cartesian diagrams

Y Π ΠN
Y

X ΠS
X ΠN

X

v

u

Since ΠS
X ÝÑ ΠN

X is a quotient it follows that Π is a gerbe. As NspX q is a full subcategory
of VectpX q, by Lemma 1.22, Lemma 2.7 and Lemma 4.7 we have that VectpΠq ÝÑ VectpYq
is fully faithful with essential image NspYq. Thus we have Π “ ΠS

Y . The last claim follows
from the Cartesian diagram and Lemma 1.17. �

5. Counterexamples

In this section we collect various examples. We start by showing that, under the as-
sumption of Theorem I, the condition H0

pOYq “ k in general does not imply that Y is
inflexible, even when f˚OY has étale monodromy gerbe (e.g. if char k “ 0).

Example 5.1. Let k be an algebraically closed field. We show an example of an elliptic
curveX over k with an essentially finite cover f : Y ÝÑ X of degree 2 such that H0

pOYq “ k
but Y is not inflexible. Clearly here Y is not reduced. The monodromy gerbe of f˚OY is
Bµ2.

Let X be an elliptic curve together with a non trivial line bundle L such that Lb2 » OX .
This is the data of a Nori-reduced map u : X ÝÑ Bµ2. Let A “ krεs “ krxs{px2q equipped
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with the µ2 “ Spec pkrys{py2 ´ 1qq action

A ÝÑ Ab pkrys{py2
´ 1qq, ε ÞÝÑ εb y

and set ∆ “ rSpecA{µ2s. Define Y ÝÑ X with the 2-Cartesian diagram

Y ∆

X Bµ2

v

u

f

Since u is Nori-reduced we have u˚OX » OBµ2 and v˚OY » O∆ by flat base change. In
particular

H0
pOY q “ H0

pO∆q “ Aµ2 “ k

where the last equality follows from a direct computation. On the other hand, Y is not
inflexible because v˚OY » O∆; this implies that v : Y ÝÑ ∆ does not factor through a
gerbe.

We now show examples of towers without a Galois envelope. The lemma below will be
our method to exclude that a given tower has a Galois envelope.

A torsor under a finite group scheme G over k is called minimal if it does not come from
a torsor under a proper subgroup of G. For instance Nori-reduced torsors are minimal.

Lemma 5.2. Let X be a fibered category, and let Z ÝÑ Y ÝÑ X be a pG,Hq-tower of
torsors with Y ÝÑ X minimal. If the tower has a Galois envelope with group G then the
map X ÝÑ BpG,Hq factors through a map BG ÝÑ BpG,Hq.

Proof. Let P ÝÑ X and P ÝÑ Z be the Galois envelope. We must show that there is a
tower over BG whose pullback along X ÝÑ BG is the original tower. Since Y ÝÑ X is
minimal the map G ÝÑ G is surjective. By Lemma 1.17 the G-torsor over BG induced by
G ÝÑ G is BH ÝÑ BG, where H is the kernel of G ÝÑ G. The pullback of the G-torsor
BH ÝÑ BG along X ÝÑ BG is, by construction, Y ÝÑ X . The map Y ÝÑ BH is given
by the H-torsor P ÝÑ Y . The homomorphism H ÝÑ H gives a map BH ÝÑ BH and
therefore an H-torsor B ÝÑ BH. The fact that P ÝÑ Z is H-equivariant means that
Z ÝÑ Y is the H-torsor induced by the H-torsor P ÝÑ Y along H ÝÑ H. This exactly
means that the H-torsor B ÝÑ BH pulls back to Z ÝÑ Y along Y ÝÑ BH. �

This example shows that the condition on the cohomology groups H1 in Theorem III is
necessary.

Example 5.3. Assume that G and H are not étale. We give an example of a pseudo-
proper, inflexible and smooth algebraic stacks X with a pointed pG,Hq-tower of Nori-
reduced torsors Z ÝÑ Y ÝÑ X without a Galois envelope. In particular Z ÝÑ X cannot
be an essentially finite cover by Theorem 3.10.

Using notations of Lemma 3.6 set X “ BQ with the tower BW 1 ÝÑ BWGpHq ÝÑ BQ.
If this tower has a Galois envelope then by Lemma 5.2 the map BQ ÝÑ BpG,Hq factors
through a finite gerbe. Since the map BQ ÝÑ BpG,Hq is fully faithful, this means that Q
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has to be a finite group scheme. Thus we must show that Q is not a finite group scheme. In
particular we can assume k to be algebraically closed, so that G is a disjoint union of copies
of the connected component G0. In particular WGpHq “ pWG0pHqq

#Gét , so that we can
assume G local but not trivial. Moreover there is an injective map WGpH0q ÝÑ WGpHq,
where H0 is the connected component of H. Thus we can also assume that H is local but
not trivial. If krεs “ krxs{px2q there is a map krεs Ď krGs. Thus one gets an injective
map of group schemes WUpHq ÝÑ WGpHq where U “ Spec krεs. Similarly one can find a
closed embedding U ÝÑ H, which yields a monomorphism of schemesWUpUq ÝÑ WUpHq.
Moreover there is a monomorphism

A1
pBq ÝÑ WUpUqpBq “ HomB-algebraspBrεs, Brεsq, b ÞÝÑ pε ÞÑ bεq

In conclusion we find a monomorphism φ : A1 ÝÑ WGpHq. If WGpHq is finite, the image
of φ must be connected, reduced, finite and with a rational point, that is Spec k, so that φ
is not a monomorphism. Therefore, WGpHq is not finite.

The next example shows the importance of the pseudo-properness assumption on X in
Theorem III.

Example 5.4. We give an example of a smooth, integral and affine scheme X over k with
a pointed pG,Hq-tower of Nori-reduced torsors without a Galois envelope.

Assume that k is an algebraically closed field of characteristic 2 and let H “ µ2 and G
be either µ2 or α2. Recall that if B is a k-algebra and b P B˚ then Brxs{px2 ´ bq has an
action by µ2 and an action by α2 and it is a torsor over B for both actions. Since k is
algebraically closed and α2 and µ2 are simple we have that Brxs{px2 ´ bq is Nori-reduced
if b is not a square in B and it is trivial otherwise.

Let K be the separable closure of the field of fractions kptq and consider

K1 “ Krxs{px2
´ tq and K2 “ Krx, ys{px2

´ t, y2
´ xq

The rings K1 Ď K2 are fields. Thus SpecK2 ÝÑ SpecK1 ÝÑ SpecK is a pG,Hq-tower of
non trivial torsors which defines a map ξ : SpecK ÝÑ BpG,Hq. Consider a smooth map
X ÝÑ BpG,Hq from a connected affine scheme and whose image contains the point ξ. We
claim that the corresponding tower is pointed and Nori-reduced. It is pointed because k
is algebraically closed. It is Nori-reduced because, since K is separably closed, the map ξ
factors through a map SpecK ÝÑ X and the torsors in the tower ξ are not trivial.

Let α : X ÝÑ BpG,Hq and β : Y ÝÑ BpG,Hq be smooth maps from connected affine
schemes and assume that their images contain ξ and the trivial tower respectively. If the
tower α does not have a Galois envelope we have our counter-example. Otherwise, by
5.2, the map is (topologically) constant and ξ is an open point in BpG,Hq. If BpG,Hq is
irreducible then ξ would be its generic point and, since the image of β is open, it would
contain ξ. In this case if the tower β has a Galois envelope it would follow that ξ is the
trivial tower, that is x P K1 become a square extending the field K, which is not true.

Thus it is enough to show that BpG,Hq is a smooth and connected algebraic stack.
Consider the tower W ÝÑ HomkpG,BHq ÝÑ BpG,Hq described in 3.2. It is enough to
show that W is a smooth connected algebraic stack. The objects of WpBq are H-torsors
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over G ˆ B with a trivialization over SpecB
1
ÝÝÑ G ˆ B. We think about µ2-torsors as

line bundles with an isomorphism between its square and the trivial bundle. Set also
Brεs “ Brxs{px2q “ BrGs. Thus WpBq is the stack of triples pL, φ, ψq where L is a Brεs-
line bundle, φ : L2 ÝÑ Brεs is an isomorphism and ψ : L{εL ÝÑ B is an isomorphism such
that ψb2 ” φ modulo ε. If L “ Brεs then φ “ a ` bε P Brεs˚ and ψ “ c P B˚ with
a “ c2 and, up to an isomorphism in WpBq, one can always assume c “ 1. Thus the
map A1 ÝÑ W , mapping b P A1pBq to pBrεs, 1 ` bε, 1q, is an epimorphism in the Zariski
topology. In particular A1 ÝÑ W is an fppf covering if A1 ˆW A1 ÝÑ A1 is. A direct
computation shows that an isomorphism pBrεs, 1` bε, 1q ÝÑ pBrεs, 1` cε, 1q exists if and
only if b “ c and in this case it is the multiplication by 1 ` λε for λ P B. This means
that A1ˆW A1 ÝÑ A1 coincides with the projection pr1 : A1ˆk A1 ÝÑ A1 which is an fppf
covering.

We conclude the section with an example showing that Corollary I (and thus Theorem
I) as well as Lemma 2.11 fails without the finiteness assumption on the first cohomology
group of vector bundles.

Example 5.5. We give an example of a Nori-reduced torsor f : Y ÝÑ X between pseudo-
proper, inflexible and smooth algebraic stacks over k with y P Ypkq such that the following
hold:

‚ f˚ does not map essentially finite vector bundles to essentially finite vector bundles,
‚ πNpX , fpxqq is finite,
‚ f : Y ÝÑ X is the universal torsor, but
‚ πNpY , yq is not trivial.

Let k be a field of characteristic 2, H “ µ2, and let G be either µ2 or α2. Consider the
pG,Hq-tower of pointed Nori-reduced torsors

Z “ BW 1 h
ÝÝÑ Y “ BWGpµ2q

f
ÝÝÑ X “ BQ

introduced in Example 5.3. Since Z ÝÑ X is not essentially finite it follows that h˚OZ is
essentially finite while f˚ph˚OZq is not.

Consider y and x “ fpyq as the trivial torsors. Since the Nori fundamental group of an
affine gerbe BS pointed at the trivial torsor is the profinite quotient pS of S, we must show
that pQ “ G and {WGpµ2q “ µ2. Given a k-algebra B set Brεs “ Brxs{px2q. We have

WGpµ2qpBq “ µ2pBrεsq “ ta` bε | a
2
“ 1u

from which it is easy to conclude that WGpµ2q “ Ga ˆ µ2. Since any homomorphism from
Ga to a profinite group is trivial we conclude that {WGpµ2q “ µ2. Similarly, denoting by K
the kernel of Q ÝÑ pQ, we have Ga Ď K Ď WGpµ2q. Since µ2 is simple we just have to check
that Ga is not normal in Q. Note that G “ Spec krεs; for g P GpBq, let ψg : Brεs ÝÑ Brεs
be the multiplication by g. Then,

g ‹ x ‹ g´1
“ ψgpxq for x P µ2pBrεsq “ WGpµ2qpBq
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where ‹ denotes the multiplication in Q. If G “ µ2, so that g P B˚ with g2 “ 1, an easy
computation shows that ψgpεq “ gε` pg ´ 1q. Thus

ψgp1` εq “ g ` gε

is in Ga if and only if g “ 1, which is not always the case.
If G “ α2, so that g P B with g2 “ 0, then ψgpεq “ ε` g. Thus

ψgp1` εq “ 1` g ` ε

is in Ga if and only if g “ 0, which is not always the case.
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